
Threaded Binary Tree (B+)

• All data is stored at the leaf nodes (leaf pages); all other

nodes (index pages) only store keys

B+ Trees

• Similar to B trees, with a few slight differences

• All data is stored at the leaf nodes (leaf pages); all other

nodes (index pages) only store keys

• Leaf pages are linked to each other

• Keys may be duplicated; every key to the right of a

particular key is >= to that key

B+ Tree Example
9, 16

2, 7 12 18

1 7

9 3, 4, 6 12

16 19

B+ Tree Insertion

• Insert at bottom level

• If leaf page overflows, split page and copy middle element

to next index page

• If index page overflows, split page and move middle

element to next index page

B+ Tree Insertion Example
9, 16

2, 7 12 18

1 7

9 3, 4, 6 12

16 19

Insert 5

B+ Tree Insertion Example
9, 16

2, 7 12 18

1 7

9 3, 4, 5,6 12

16 19

Insert 5

B+ Tree Insertion Example
9, 16

2, 5, 7 12 18

1 7

9
3, 4

12

16 19

Split page,

copy 5

5, 6

B+ Tree Insertion Example 2

9, 13, 16

9 3, 4, 6 14 16, 18, 20

Insert 17

B+ Tree Insertion Example 2

Insert 17

9, 13, 16

9 3, 4, 6 14 16, 17, 18, 20

B+ Tree Insertion Example 2

Split leaf

page, copy 18

9, 13, 16, 18

9 3, 4, 6 14 16, 17 18, 20

B+ Tree Insertion Example 2

Split index

page, move 13

16, 18

9 3, 4, 6 14

9

13

16, 17 18, 20

B+ Tree Deletion

• Delete key and data from leaf page

• If leaf page underflows, merge with sibling and delete key

in between them

• If index page underflows, merge with sibling and move

down key in between them

B+ Tree Deletion Example

Remove 9

9 3, 4, 6

9

13

16, 18

14 16, 17 18, 20

B+ Tree Deletion Example

Remove 9

3, 4, 6

9

13

16, 18

14 16, 17 18, 20

B+ Tree Deletion Example
Leaf page underflow,

so merge with sibling

and remove 9

3, 4, 6

13

16, 18

14 16, 17 18, 20

B+ Tree Deletion Example
Index page underflow,

so merge with sibling

and demote 13

13, 16, 18

3, 4, 6 14 16, 17 18, 20

Threaded Trees

• Binary trees have a lot of wasted space: the leaf nodes

each have 2 null pointers

• We can use these pointers to help us in inorder traversals

• We have the pointers reference the next node in an

inorder traversal; called threads

• We need to know if a pointer is an actual link or a thread,

so we keep a boolean for each pointer

Threaded Tree Code

• Example code:

class Node {

 Node left, right;

 boolean leftThread, rightThread;

}

Threaded Tree Example

8

7 5

3

11

13

1

6

9

Threaded Tree Traversal

• We start at the leftmost node in the tree, print it, and

follow its right thread

• If we follow a thread to the right, we output the node and

continue to its right

• If we follow a link to the right, we go to the leftmost node,

print it, and continue

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Start at leftmost node, print it

Output

1

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

5

6

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

6

7

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

5

6

7

8

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

6

7

8

9

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

5

6

7

8

9

11

Threaded Tree Traversal

8

7 5

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

6

7

8

9

11

13

Threaded Tree Traversal Code
Node leftMost(Node n) {

 Node ans = n;

 if (ans == null) {

 return null;

 }

 while (ans.left != null) {

 ans = ans.left;

 }

 return ans;

}

void inOrder(Node n) {
 Node cur = leftmost(n);
 while (cur != null) {
 print(cur);
 if (cur.rightThread) {
 cur = cur.right;
 } else {
 cur = leftmost(cur.right);
 }
 }
}

Threaded Tree Modification

• We’re still wasting pointers, since half of our leafs’

pointers are still null

• We can add threads to the previous node in an inorder

traversal as well, which we can use to traverse the tree

backwards or even to do postorder traversals

Threaded Tree Modification

8

7 5

3

11

13

1

6

9

